Effect of acidic pH on PLGA microsphere degradation and release.

نویسندگان

  • Banu S Zolnik
  • Diane J Burgess
چکیده

Polymer degradation and drug release kinetics from PLGA microspheres were investigated under neutral and acidic pH conditions. Two different Mw formulations (Mw: 25,000 and 70,000) were investigated and both exhibited a triphasic release profile at pH 7.4 as well as at pH 2.4. The initial burst and lag phases were similar for both pH values, while the secondary apparent-zero-order phase was substantially accelerated at pH 2.4. The polymer molecular weight change with time for the microspheres followed first order degradation kinetics for both pH values. A linear relationship was established between % drug release (post burst release) and Ln (Mw) for both pH conditions. Most significantly, morphological studies showed that the mechanism of polymer degradation changed from "inside-out" degradation at pH 7.4 to "outside-in" at pH 2.4. At pH 7.4, the microspheres followed the usual morphological changes such as surface pitting and pore formation. Whereas, at pH 2.4 the microspheres maintained smooth surfaces throughout the degradation process and were susceptible to fracturing. The fracturing of the microspheres was attributed to crystallization of oligomeric degradation products as a consequence of their low solubility at this pH. It also appeared that degradation occurred in a more homogeneous pattern at pH 2.4 than is typical of PLGA microspheres at pH 7.4. This may be a result of the entire microspheres experiencing a close-to-uniform pH at 2.4. However, at pH 7.4, the local micro-environmental pH within the microspheres has been reported to vary considerably due to a build up of acid oligomers. This heterogeneous degradation results in the random formation of channels within microspheres degraded at pH 7.4 which was not observed in those degraded at pH 2.4. This is the first time that morphological changes during PLGA microsphere degradation have been compared for low and neutral pH and the data shows a change in the mechanism of degradation at the low pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro stress effect on degradation and drug release behaviors of basic fibroblast growth factor – poly(lactic-co-glycolic-acid) microsphere

OBJECTIVE To study the degradation and basic fibroblast growth factor (bFGF) release activity of bFGF - poly(lactic-co-glycolic-acid) microsphere (bFGF-PLGA MS) under stress in vitro, including the static pressure and shearing force-simulating mechanical environment of the joint cavity. METHOD First, bFGF-PLGA MSs were created. Meanwhile, two self-made experimental instruments (static pressur...

متن کامل

Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres.

Two poly(lactic-co-glycolic acid) (PLGA) microsphere formulations, with different polymer molecular weights were investigated to determine whether an in vitro and in vivo relationship could be established for dexamethasone release. A USP apparatus 4 was used for in vitro testing. The in vivo release kinetics and pharmacodynamic effects of dexamethasone were evaluated using a Sprague Dawley rat ...

متن کامل

Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline

Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lacti...

متن کامل

BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems.

Acidification of the internal poly(lactide-co-glycolide) (PLGA) microenvironment is considered one of the major protein stresses during controlled release from such delivery systems. A model protein, bovine serum albumin (BSA), was incubated at 37 degrees C for 28 days to simulate the environment within the aqueous pores of PLGA during the release phase and to determine how acidic microclimate ...

متن کامل

Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline

Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 122 3  شماره 

صفحات  -

تاریخ انتشار 2007